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Abstract�

The rank and invariants of a general lattice rule are conventionally de�ned in terms of
the group�theoretic properties of the rule� Here we give a constructive de�nition of the
rank and invariants using integer matrices� This underpins a nonabstract algorithm
set in matrix algebra for obtaining the Sylow p�decomposition of a lattice rule� This
approach is particularly useful when it is not known whether the form in which the
lattice rule is speci�ed is canonical or even repetitive� A new set of necessary and
su�cient conditions for recognizing a canonical form is given�
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� Introduction

An s�dimensional lattice rule Q��� is an equal�weight quadrature rule on ��� ��s

of the form

Q���f �
�

N

NX
j��

f�xj ��

where x�� � � � �xN are all the points of ��� ��s that belong to an integration lat�
tice �	 An s�dimensional integration lattice is a discrete set of points that is
closed under normal addition and subtraction and that contains the unit lat�
tice �� as a sublattice	 Here �� is the familiar lattice consisting of all points
x � �x�� x	� � � � � xs�
 all of whose components xi are integers	 The set of abscissas
used for a lattice rule forms an Abelian group under addition modulo �	
It is known �SL�� that every s�dimensional lattice rule may be written in the

form Qf � Q�t�D� Z� sf 
 where

Q�t�D� Z� sf ��
�

d�d	 � � �dt

d�X
j���

d�X
j���

� � �

dtX
jt��

f

��
tX

i��

ji
zi

di

��
���	��
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here t and di are positive integers
 zi � ��
 and fxg � ��� ��s denotes the
vector whose components are the fractional parts of the components of x	 This
form is known as a t�cycle D � Z form of an s�dimensional lattice rule �LK��	
The parameters in the abbreviation Q�t�D� Z� s are D
 which denotes the t �
t diagonal integer matrix having positive diagonal elements di
 and Z
 which
denotes the t� s integer matrix having rows zi	
The number of distinct quadrature points in a lattice rule is known as the

order of the rule and is denoted by ��Q�	
Definition ���� The rule form Q�t�D� Z� s is termed nonrepetitive when the

order of Q is ��Q� �
tQ

i��
di�

On the other hand
 a D � Z form may be repetitive� that is
 the order of the
lattice rule is less than d�d	 � � �dt	 �One can show that the number of distinct
quadrature points in a repetitive D � Z form is d�d	 � � �dt�k for some integer
k � �	�
A given lattice rule has many nonrepetitive distinct D � Z forms	 In �SL��

a partial solution to this problem of nonuniqueness is given	 There it is shown
that each lattice rule may be expressed in a nonrepetitive t�cycle D � Z form
in which di�� j di
 i � �� �� � � � � t � �
 and dt � � with t � s	 Moreover
 in
such a representation
 the values of t and of di are unique to the rule Q and
are called the rank of Q and the invariants of Q
 respectively	 Such a form is
termed a canonical form	 The de�nitions in �SL�� rely heavily on group theory	
In fact
 the theory of lattice rules forms an excellent application of Kronecker�s
celebrated group representation theorem� see
 for example
 �S��
 p	 �� et seq�	
However
 the practical problem remains of actually calculating a canonical form
of a general rule given in D � Z form	 This is the problem addressed in this
paper	
In a previous paper �LJ�� we treated prime�power rules
 that is
 rules whose

order
 ��Q�
 is a power of some prime	 For these rules the invariants have a
nonabstract de�nition that is closely related to the ideas underlying projection
regularity �see �LJ���	 In that less complicated context
 a theory was developed
that does not rely on group theory or lattice theory at all	 We state here a few
key de�nitions and results from that paper	
Definition ���� Let a prime�power rule Q have invariants ni and rank

r� Then the form Q � Q�r�D� Z� s is termed a canonical form of Q if D �
diagfn�� n	� � � � � nrg�
Definition ���� The t � t integer diagonal matrix D � diagfd�� d	� � � � � dtg

is termed sequential when

d� � d	 � � � � � dt � ��

Theorem ���� A necessary and su�cient condition for a D � Z form of a

prime�power rule to be canonical is that it be nonrepetitive with sequential D�

Theorem ���� A necessary and su�cient condition for a D � Z form of a

prime�power rule of order p� to be canonical is that D be sequential and the

matrix Z be of full rank modulo p�
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For a prime�power rule in nonrepetitive form
 it follows from De�nition �	�
that each di is a prime power	 When D is sequential
 this gives di�� j di
 and so
the invariants also have this property	
In this paper we exploit the previous work of �LJ�� on prime�power rules to

provide a corresponding theory for general rules	 Speci�cally
 we use a matrix�
based presentation of the Kronecker theorem mentioned above	 This allows us
to express the D � Z form of a rule Q as a sum of the D � Z forms of the
�Sylow p�components� of the rule Q	 These Sylow p�components are themselves
lattice rules of prime�power order	 Section � is devoted to this decomposition

Theorem �	� being the key result	 This theorem is well known in the context of
the decomposition of �nite Abelian groups	 What is new here is the speci�cation
of a D � Z form for each Sylow p�component	
In Section � we de�ne the rank and invariants of the general rule in terms of

the rank and invariants of the component rules� we de�ne a canonical form� and
we show how it may be obtained from a general D � Z form	 These particular
de�nitions are constructive	 In Section �
 we complete the theory by providing
in Theorem �	� a necessary and su�cient condition for a D � Z form to be
canonical	

� The Sylow p�Component Rule Forms

In this section we introduce notation and algorithmic rules for handlingD�Z
forms
 and we use these to express a rule form as a sum of Sylow p�component
rule forms	 The transformations listed in the following theorem are well known
and have been widely used in previous work such as �SL�� and �SJ��	
Theorem ���� The rule Q � Q�t�D� Z� s given in ��	�� is unaltered if Z is

modi�ed by applying one of the following transformations or a sequence of them�

�a� Replace zi by �zi for � an integer satisfying gcd��� di� � ��

�b� Replace zi by zi � dix for x � ���

�c� Replace zi by zi � �mdi�dj�zj for j �� i� m an integer� and dj j mdi�

Other transformations that allow one to change D and Z by consistent row
interchange
 removal of common factors
 and removal of redundant rows are
listed in �LJ��	 In this paper we do not use them explicitly	 However
 two more
transformations are given in Theorem �	� below	
We now introduce the sum of lattice rules	 This is a simple concept	
Definition ���� The sum of two s�dimensional integration lattices �� and

�	 is a lattice � that comprises all points and only points expressible in the form

x � x� � x	�

where xi � �i� i � �� ��
Colloquially
 � is the smallest lattice that contains both �� and �		
Definition ���� The sum

Q � Q� �Q	
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of two s�dimensional lattice rules Q� and Q	 is the rule Q obtained from the

sum of the corresponding integration lattices for Q� and Q	�

This de�nition extends to the sum of more than two lattice rules in an obvious
way	 It follows immediately that when

Q�f �
�

��Q��

��Q��X
j��

f�xj� and Q	f �
�

��Q	�

��Q��X
k��

f�yk����	��

their sum is

Qf � �Q� �Q	�f �
�

��Q����Q	�

��Q��X
k��

��Q��X
j��

f�fxj � ykg����	��

and
��Q� � Q	� � ��Q����Q	����	��

with equality being valid if ��Q�� and ��Q	� are relatively prime	 In the situation
where there is equality
 the sum is a direct sum� the reader is referred to �JS��
or �SJ��
 pp	 ����� for further details about direct sums in this context	
Lemma ���� The sum of two rules having forms Q�t�� D�� Z�� s and

Q�t	� D	� Z	� s� respectively� may be expressed in the form Q�t�� D�� Z�� s with
t� � t� � t	� D� � diagfD�� D	g� and

Z� �

�
Z�
Z	

�
�

Proof	 The result is readily proved by using ��	��
 ��	��
 and ��	�� with
Q� � Q�t�� D�� Z�� s and Q	 � Q�t	� D	� Z	� s	
It is a short step from dealing with the sum of two rules Q�f and Q	f to

the �sum� of two forms Q�t�� D�� Z�� s and Q�t	� D	� Z	� s that represent them	
One may re�express Lemma �	� using the following de�nition	
Definition ���� A relation

Q�t�� D�� Z�� s � Q�t�� D�� Z�� s �Q�t	� D	� Z	� s

is valid if and only if the rules represented satisfy Q� � �Q� �Q	��
This paper relies heavily on this notation and de�nition	 Each relation of this

type could be veri�ed by expanding each term in the form of ��	��
 but this
formalismmakes such veri�cation unnecessary	
We note that
 while the sum of two rules is well de�ned
 the sum of two

forms is not	 For example
 in Lemma �	� one could equally well have set D� �
diagfD	� D�g and

Z� �

�
Z	
Z�

�
�

We now present a pair of transformations using this notation	 These two
transformations
 which are discussed and illustrated in �L��
 are reasonably
straightforward to establish	
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Theorem ���� When m and n are relatively prime�

Q���mn� z� s � Q���m� z� s �Q��� n� z� s��	��

and

Q���m� z�� s �Q��� n� z	� s � Q���mn�mz	 � nz�� s���	��

This notation is convenient for manipulating rule forms	 A trivial iterated
application of Lemma �	� provides a decomposition of any t�cycle D � Z form
into the sum of ��cycle D � Z forms as follows�

Q�t�D� Z� s � Q��� d�� z�� s �Q��� d	� z	� s � � � ��Q��� dt� zt� s���	��

where
 as before
 zj denotes the jth row of Z	 Further decomposition is possible
when detD has more than one prime factor	
Lemma ���� Let detD have the prime factorization detD � p��� p��	 � � �p

�q
q �

and let di have the prime factor decomposition

di � p
���i
� p

���i
	 � � �p�q�iq � i � �� �� � � � � t���	��

Then

Q��� di� zi� s � Q��� p
���i
� � zi� s �Q��� p

���i
	 � zi� s � � � ��Q��� p�q�iq � zi� s���	��

Proof	 This follows by repeated application of ��	�� above	
It is well known that when p is prime
 Q��� p�� z� s represents a cyclic rule	

Surveys on cyclic rules may be found in �N�� and �N��	 The decompositions
��	�� and ��	�� are very well known in terms of the underlying group theory	
The formulation given here will allow us to write down the actual cyclic rules
involved in the decomposition
 in terms of the parameters in D and Z	 These
results apply as written in cases in which �j�i � �
 giving p

�j�i
j � �	 The �nal

forms may include forms Q��� �� zi� s
 which may be included or discarded at
will	
The conventional de�nition of the order of an element of an Abelian group

under addition modulo � is also used in our context	 Thus we have the following
de�nition	
Definition ���� A point x is of order n when nx � �� �and n is the smallest

positive integer for which this is true��
We now introduce the Sylow p�component of a rule Q	 This is de�ned as follows	
Definition ���� The Sylow p�component of a lattice rule Q is a lattice rule

whose abscissa set comprises all points of the abscissa set of Q that are of order

p� for any nonnegative integer ��
This corresponds precisely to the Sylow p�subgroup of a given group
 the group

elements being members of the respective abscissa sets	 We note some simple
standard properties	
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�a� The trivial Sylow p�component with p � � is Q��� �� Z� s
 which represents
only the single point �
 the origin	

�b� When Q is a prime�power rule
 it has only one nontrivial Sylow p�compo�
nent
 which coincides with Q	

�c� When Q � Q�t�D� Z� s
 the only nontrivial Sylow p�components are those
corresponding to any primes p that occur as a factor of detD	

It follows that
 using ��	�� and ��	��
 we may set

Q�t�D� Z� s �
tX

i��

qX
j��

Q��� p
�j�i
j � zi� s �

qX
j��

S�j��

where we have de�ned a rule S�j� by one of its D � Z forms
 namely


S�j� ��
tX

i��

Q��� p
�j�i
j � zi� s � Q�t�D�j�� Z� s�

with
D�j� � diagfd�j�� � d

�j�
	 � � � � � d

�j�
t g � diagfp

�j��
j � p

�j��
j � � � � � p

�j�t
j g���	��

Clearly S�j� contains only points that belong to Q
 and it contains only points
of order p�j for various integers �	 No other Sylow p�component contains a point
of order p�j for any �
 except for the origin	 Taken together
 these facts establish
the following theorem	
Theorem ���� Any rule Q may be expressed as the sum of all its Sylow p�

components� There is a Sylow pj�component S�j� for every pj occurring in the

prime factor decomposition of ��Q�� When Q � Q�t�D� Z� s� one form for S�j�

is

S�j� � Q�t�D�j�� Z� s���	���

where D�j� is given in ��	���
Note that in this D�Z form of the Sylow pj�component rule
 the parameters

t
 Z
 and s are the same as those in the D � Z form for Q
 and the elements of
D�j� are obtained from those of D by retaining only the pj component of each
element	
Example ���� Consider the D � Z form Q��� D� Z� � with

D �

�
� �� � � �

� �� � � �	 �
� � �

	

 � Z �

�
� �� � �

� � �
� � �

	

 ���	���

With p� � �
 p	 � �
 and p� � �
 it then follows that D�Z forms for the Sylow
pj�components are given by S�j� � Q��� D�j�� Z� �
 where

D��� �

�
� � � �

� � �
� � �

	

 � D�	� �

�
� � � �

� � �
� � �

	

 � D��� �

�
� � � �

� �	 �
� � �

	

 ���	���
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Note that each form has the same Z matrix
 which is the one in the original
D � Z form	 �

This last theorem is one of the key results in the theory of lattice rules	 It
is familiar in a group theory context and
 in that context
 may be established
more quickly and more elegantly than the derivation given above	 But here
we have obtained a simple calculable D � Z representation of each Sylow p�
component without demanding that Q be given in canonical form �see the next
section� or even in nonrepetitive form	 It is immediately available given any
D � Z representation of Q	 That is
 it provides a constructive example of the
Kronecker decomposition theorem	
In view of ��	��
 we have

��Q� �

qY
j��

��S�j�����	���

and
 following the notation of ��	�� and ��	��
 we have

detD �

qY
j��

detD�j����	���

This leads to the following theorem	
Theorem ���� In the notation of the previous theorem� the form Q�t�D� Z� s

is nonrepetitive if and only if every component form Q�t�D�j�� Z� s is nonrepet�
itive�

Proof	 We exploit ��	��� and ��	��� above	 First we note that
 whether or
not any of these forms are repetitive
 we have

��S�j�� � detD�j� for all j���	���

so it follows that

��Q� �

qY
j��

��S�j�� �

qY
j��

detD�j� � detD���	���

When all the forms for S�j� are nonrepetitive
 the relation in ��	��� is an equality	
This produces an equality in ��	���
 which shows that the form for Q is also
nonrepetitive	 Conversely
 if one of the forms for S�j� is repetitive
 there is
one value of j for which the relation in ��	��� is a strict inequality� this makes
the relation in ��	��� a strict inequality
 showing that the form for Q is also
repetitive	

� Canonical Form of a General Lattice Rule

In �LJ��
 the rank and invariants for prime�power rules are de�ned in a nonab�
stract manner	 Some of their properties are recalled in the introduction	 In this
section we exploit these de�nitions to de�ne the same quantities in the context
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of a general lattice rule	 The link that enables the broadening of the de�nition
is Theorem �	�
 which asserts that any rule may be decomposed into a sum

Q � S��� � S�	� � � � �� S�q���	��

of its Sylow pj�components S�j�
 j � �� �� � � � � q	 Each component is a prime�
power rule
 and its rank and invariants satisfy the sequential and divisibility
conditions mentioned in Theorem �	� and the discussion preceding it	 Let S�j�

have rank and invariants

r�j�� n
�j�
� � n

�j�
	 � � � � � n�j�s ���	��

Here it is convenient to include the trivial invariants
 that is


n
�j�
i � �� i � r�j� � �� � � � � s���	��

Definition ���� The rank and invariants of a general lattice rule Q are

r � max�r���� r�	�� � � � � r�q�� and ni � n
���
i n

�	�
i � � �n

�q�
i � i � �� �� � � �� r���	��

where r�j� and n
�j�
i are respectively the rank and invariants of the Sylow pj�

components of Q as speci�ed in ��	��� ��	��� and ��	�� above�
This de�nition comprises a nonabstract realization of a standard de�nition

based on group theory	
Definition ���� Let Q have invariants ni and rank r� Then any form Q �

Q�r�� D� Z� s is termed a canonical form of Q if D � diagfn�� n	� � � � � nr�g� so
long as r���r� s�
�When r� � r
 this is known as a padded version because� each of the �nal

r� � r elements of D is � and the �nal r� � r rows of Z are arbitrary	�
Thus
 by de�nition
 we see that
 as in the case of the simpler prime�power

rule
 a canonical D � Z form is one in which the elements of D are the actual
invariants of the rule	
Theorem ���� A canonical form Q�r�D� Z� s has the following properties�

�a� ni�� j ni� i � �� �� � � �� r � ��

�b� Q�r�D� Z� s is nonrepetitive�

Proof	 The �rst property is inherited from the corresponding property for
each of the Sylow p�components through ��	��	 The second property may be
established as follows	 If Q�r�D� Z� s were repetitive
 the transformations of
Theorem �	� could be used to reduce it to a nonrepetitive form Q�r�� D�� Z�� s
with detD� � detD	 For a nonrepetitive form
 ��Q� � detD�� but for a canon�
ical form
 detD � ��Q�	 Since detD� �� detD
 it follows that a canonical form
cannot be repetitive	
Corollary ���� In a canonical form� zi�ni is semiproper� that is�

gcd�Zi�� � � � � Zis� ni� � ��
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Proof	 Suppose zi�ni were not semiproper
 so that gcd�Zi�� � � � � Zis� ni� � 	
for some 	 � �	 Then we could replace zi by z�i � zi�	 and ni by n�i � ni�	

and so the form would be repetitive
 which contradicts Theorem �	�	

Clearly the rank and invariants of any rule Q exist and are unique
 since the
expansion ��	�� is unique
 each component has unique invariants
 and these are
assembled in a determinate way in ��	��	 It is straightforward to show that
every rule Q has a canonical form	 This follows from the existence of concrete
realizations of each step in the de�nitions	

Theorem ���� When Q � Q�r�D� Z� s is a canonical form of Q� then

Q�r�D�j�� Z� s is a canonical form of S�j�� its Sylow pj�component�

The proof of this result is straightforward and is omitted	

We now describe in detail how a canonical form of a general rule Q may be
constructed from any D�Z form	 When Q � Q�t�D� Z� s
 we �rst invoke The�
orem �	�
 which asserts that each Sylow pj�component is S�j� � Q�t�D�j�� Z� s

where
 as usual
 D�j� comprises the pj�components of D	

If each D�j� is sequential and each D � Z form is nonrepetitive
 the original
D�Z form is already canonical	 Otherwise
 it is necessary to form a new repre�
sentation for S�j� that is sequential and nonrepetitive	 This can be accomplished
by using the transformations of Theorem �	� and the others mentioned just after
that theorem	 In �LJ�� a procedure for doing this is given as part of the proof
of Theorem �	�	

Example ���� Here we obtain sequential nonrepetitive representations for
the Sylow pj�components of the rule given by the D � Z form in Example �	�	
There the D � Z forms for the three Sylow pj�components given in ��	��� are
not sequential
 and all involved the same matrix Z given in ��	���	 We now
individually treat the D � Z form for each Sylow pj�component	 We make each
sequential by reordering rows and removing rows for which the corresponding
diagonal element of D is �	 This gives immediately D � Z forms for the three
Sylow pj�components given by S�j� � Q�t�j�� D�j�� �Z�j�� �
 where

t��� � �� D��� �

�
� �
� �

�
� �Z��� �

�
�� � �
� � �

�
�

t�	� � �� D�	� �

�
�
� �Z�	� �


� � �

�
�

t��� � �� D��� �

�
� �	 � �

� � �
� � �

	

 � �Z��� �

�
� � � �

�� � �
� � �

	

 �

Finally �and optionally�
 we may use Theorem �	��b� to reduce the size of the
elements in the �Z�j��matrices	 We then obtain D �Z forms for the three Sylow
pj�components given by S�j� � Q�t�j�� D�j�� Z�j�� �
 where

Z��� �

�
� � �
� � �

�
� Z�	� �


� � �

�
� Z��� �

�
� � � �

� � �
� � �

	

 �
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It is not di�cult to see that Z��� is of full rank modulo � and that Z�	� is
of full rank modulo �	 It then follows from Theorems �	� and �	� that the
representations for S��� and S�	� are nonrepetitive	
Z��� is not of full rank modulo �	 This could be ascertained by calculating

detZ���
 but it is immediately apparent that the last row of Z���
 z���� 
 is equal
to the sum of the �rst two rows modulo �	 Hence the representation for S��� is

repetitive	 Using Theorem �	��c�
 we may replace z
���
� by z

���
� � z

���
	 � ������ �	

In turn
 this may be replaced by z
���
� � z

���
� � ��������
 which is equal modulo

� to ��� �� �	 Discarding this zero vector
 we obtain the sequential nonrepetitive
form for S��� given by Q��� D���� Z���� �
 where

D��� �

�
�	 �
� �

�
� Z��� �

�
� � �
� � �

�
� �

When all the Sylow pj�components are in sequential nonrepetitive form
 we
assemble them
 row by row	 It is convenient in this description to provide

for each Sylow pj�component
 an s�cycle D � Z form	 One way of doing this
is to append an appropriate number of zero vectors to the Z�matrix and a
corresponding identity matrix to D	
The Sylow pj�components
 now in the form Q�s� �D�j�� �Z�j�� s
 may be re�

expressed as
sX

i��

Q��� �d�j�i � �z�j�i � s�

Since the ordering is immaterial
 we may express Q in the form

sX
i��

�
� qX

j��

Q��� �d
�j�
i � �z

�j�
i � s

�
A �

The inner sum may be assembled to give Q��� �di� �zi� s
 where �di �
qQ

j��

�d�j�i 	 This

assembly process may be carried out by making repeated use of the relation ��	��	
We then obtain the rule form for Q given by Q�s� �D� �Z� s
 where �D � diagf �dig
and

�Z �

�
����

�z�
�z	
			
�zs

	
���
 �

Reference to De�nition �	� con�rms that this is a canonical form
 with r� � s�
The rank
 r
 of the rule Q is given by the largest integer i for which �di � �	
Hence
 the form obtained by removing the last s � r rows of �Z and making a
similar curtailment to �D is also canonical	
Example ���� We continue the previous example by assembling the three

Sylow pj�components to obtain a canonical form	 Since all forms are now rank �
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or less
 we may use two cycle forms
 namely
 S�j� � Q��� �D�j�� �Z�j�� �
 where

�D��� �

�
� �
� �

�
� �Z��� �

�
� � �
� � �

�
�

�D�	� �

�
� �
� �

�
� �Z�	� �

�
� � �
� � �

�
�

�D��� �

�
�	 �
� �

�
� �Z��� �

�
� � �
� � �

�
�

We now reconstruct the original rule Q from these three forms of the Sylow pj�
components	 We have �d� � � � � � �	 � ���� and �d	 � �� � � ��	 Moreover

by using ��	�� twice
 we obtain

�z� � ��
�
�	 � ��� �� �� � � ��� �� �

�
� � � �	 � ��� �� � � ������ ���� ����

and
�z	 � �� ��� ��� �� �� ��� �� ��� �� ��� �� � � ��� �� ��

Thus a canonical D � Z form for the rule is given by Q��� �D� �Z� �
 where

�D �

�
���� �
� ��

�
� �Z �

�
���� ��� ����
� � �

�
� �

� Recognizing a Canonical Form

Although we can always obtain a canonical form for a lattice rule
 it is some�
times di�cult to recognize whether a given formQ�t�D� Z� s is a canonical form	
Of course
 a canonical form has some obvious properties	 These appear in the
following de�nition	
Definition ���� The form Q�t�D� Z� s is termed a candidate form if t � s�

each zi�di is semiproper� and

di�� j di� i � �� �� � � � � t� ��

Trivially
 a form that is not a candidate form cannot be a canonical form	
Theorem ���� If Q � Q�t�D� Z� s is a candidate form� then Q�t�D�j�� Z� s

is a candidate form of S�j�� its Sylow pj�component�

Proof	 The divisibility property follows from that of Q	 Since zi�di is

semiproper and d
�j�
i is a factor of di
 zi�d

�j�
i is also semiproper	

In Theorem �	� and Corollary �	� we established that a canonical form satis�es
the conditions to be a candidate form and is
 in addition
 nonrepetitive	 The
following theorem establishes the converse of this statement	
Theorem ���� A nonrepetitive candidate form is canonical�

Proof	 When Q�t�D� Z� s is nonrepetitive
 Q�t�D�j�� Z� s
 the form for
the Sylow pj�component of Q
 is also nonrepetitive �Theorem �	��	 When
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Q�t�D� Z� s is a candidate form
 the previous theorem shows that Q�t�D�j�� Z� s

is also	 Thus
 the elements d�j�i of D�j� satisfy d
�j�
i�� j d

�j�
i 
 and since S�j� is a

prime�power rule
 the element d
�j�
i is the ith invariant of S�j�	 By de�nition
 the

ith invariant of Q is

ni �

qY
j��

d
�j�
i �

This coincides with di
 the ith element of D	 Thus D contains the invariants of
Q
 and this is the sole condition for Q�t�D� Z� s to be a canonical form of Q	
In some of the theory one comes across representations Q�s�D� Z� s in which

Z is unimodular	 A unimodular matrix is one whose determinant is 	�	 Any
D�Z form in which Z is unimodular is nonrepetitive �see �LK��
 Theorem �	��	
Thus
 in particular
 we have the following	
Corollary ���� A candidate form Q�s�D� Z� s in which Z is unimodular is

a canonical form�

A mild generalization of this corollary is as follows	
Theorem ���� A candidate form Q�t�D� Z� s in which Z contains a t � t

unimodular submatrix is a canonical form�

Proof	 Suppose Z contains a t� t submatrix that is unimodular	 Then from
this form
 we can construct a candidate form Q�s�D�� Z�� s in which D� has a
further s�t diagonal elements
 each of which is �
 and Z� has an extra s�t rows

each of the form ��� �� � � � � �� �� �� � � �� �� with a unit occurring in each of the s� t
columns not included in the unimodular submatrix of Z	 Since detZ� � �
 we
have Z� unimodular
 and so the form Q�s�D�� Z�� s is canonical	
Recalling De�nition �	�
 we see that since Q�s�D�� Z�� s is canonical
 the in�

variants of Q are the diagonal elements of D� and the rank is the number of
nontrivial invariants	 However
 the representation Q�t�D� Z� s has a matrix D
containing all of these nontrivial invariants and represents Q	 Applying De�ni�
tion �	� directly establishes the result	
One simple special case of this theorem is the situation in which Z is column�

permuted unit upper triangular �cpuut�
 that is
 where there exists an s � s
permutation matrix P such that ZP is unit upper triangular	 This form is
discussed in great detail in �LJ��
 where it is used as the basis for a classi�cation
of prime�power rules	 This last theorem shows that a candidate form in which
Z is cpuut is a canonical form	
We now seek a criterion by which one may recognize whether a candidate

form is in fact a canonical form	 Like any other rule form
 the candidate form
represents a rule Q
 which has Sylow pj�components as detailed in Section �	
However
 the D � Z representation S�j� � Q�t�D�j�� Z� s inherits from D the

property that d
�j�
i�� j d

�j�
i 	 Hence there exists a parameter t�j� such that the

elements d
�j�
i are � for i � t�j�� and the form may be reduced to

S�j� � Q�t�j�� �D�j�� �Z�j�� s���	��

where �Z�j� is a t�j� � s submatrix of Z obtained by removing the �nal t � t�j�

rows and �D�j� is a similarly curtailed version ofD�j�	 According to Theorem �	�
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a necessary and su�cient condition for this form to be nonrepetitive is that �Z�j�

be of full rank modulo pj	 And according to Theorem �	�
 the necessary and
su�cient condition forQ�t�D� Z� s to be nonrepetitive is that all the above forms
for S�j�
 j � �� �� � � �� q
 are nonrepetitive	 This leads to the following theorem	
Theorem ���� Let Q�t�D� Z� s be a candidate form� and let the prime factor

decomposition of detD require precisely q distinct primes p�� p	� � � � � pq� Let t�j�

be the largest index i for which di contains a factor pj� Then a necessary and

su�cient condition for Q�t�D� Z� s to be a canonical form of Q is that for j �
�� �� � � �� q the �rst t�j� rows of Z form a matrix of full rank modulo pj�
Example ���� Consider the candidate D � Z form Q��� D� Z� � with

D �

�
� �� � � �	 � �

� �� � �
� � �

	

 � Z �

�
� � � �

�� �� �
� � ��

	

 ���	��

Let us set p� � �
 p	 � �
 and p� � �	 Then t��� � �� t�	� � �
 and t��� � �� and

D��� � diagf�� �� �g� �D��� � diagf�� �g�

D�	� � diagf�� �� �g� �D�	� � diagf�g�

D��� � diagf�	� �� �g� �D��� � diagf�	� �� �g�

�Z��� �

�
� � �
�� �� �

�
� �Z��� �mod �� �

�
� � �
� � �

�
�

�Z�	� �

� � �

�
� �Z�	� �mod �� �


� � �

�
�

�Z��� �

�
� � � �

�� �� �
� � ��

	

 � �Z��� �mod �� �

�
� � � �

� � �
� � �

	

 �

It is immediately clear that �Z��� �mod �� and �Z�	� �mod �� are of full rank	
One may verify that det �Z��� � ��� � � �mod ��	 The theorem then asserts
that the D � Z form is not a canonical form	 A canonical form of this rule is
given in Section �	 �The reader may verify that the D � Z form is canonical if
the �rst row of Z is replaced by � � � � 	� �

The next result is related to Theorem �	� of �L��	
Theorem ���� Suppose we have the two candidate forms

Q � Q�t�D� Z� s and Q� � Q�t�D�� Z� s

such that the elements of D satisfy

di � p
���i
� p

���i
	 � � �p�q�iq �

If the elements of D� satisfy

d�i � p
���i
� p

���i
	 � � �p�q�i

q �
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where

	j�i �

�
�� when �j�i � ��
�� when �j�i � ��

then either both candidate forms are canonical or neither is canonical�

Proof	 In the notation of ��	��
 we see fromTheorem �	� that the requirement
is that certain submatrices of Z
 namely
 �Z�j�
 j � �� � � � � � q
 be respectively of
full rank modulo pj	 The matrix �Z�j� depends only on the value of t�j�
 which
in turn depends only on which di have a pj factor and not what the pj factor is	

Thus
 in the example given above
 the results about the form being canon�
ical or not are unchanged when D is altered to any matrix of the form
diagf��������� � ������ � ���g with 
� � 
	 � �
 �� � �
 �� � �	 � �� � �
 but
Z remains as before	

� Miscellaneous Results

This section contains a few special results that are relevant when s or t is
small	 Since they are the basis of no further theory
 the proofs
 which are not
deep
 are omitted	 They may help in special cases to obtain a result without
using the general approach	 They are all concerned with cases in which a form
is altered or reduced without altering the Z�matrix	

Theorem ���� Given a candidate form Q�t�D� Z� s� the �rst invariant of the

rule Q is n� � d��

Corollary ���� When t � �� a candidate form is a canonical form�

Lemma ���� Let Q��� D� Z� s be a candidate form with d	 �
qQ

j��
p
�j��
j � Its

canonical form is Q��� �D�Z� s� where �d� � d�� �d	 �
qQ

j��
p
�j���rj���
j with rj �

rank Z �mod pj��
This lemma is an almost trivial consequence of Theorem �	�	 The factor �rj���

is simply a device to remove
 from the product
 terms for which rj � �	
Theorem ���� Let a prime�power rule S of order p� have a repetitive D �Z

form given by Q�t�D� Z� s� Let Z be of rank �t modulo p� where �t � t� Let the
�t� s matrix �Z obtained from Z by removing the �nal t � �t rows also be of rank
�t modulo p� Then

S � Q�t� �D�Z� s�

where �D � diagfd�� d	� � � � � d�t� �� � � � � �g� is a canonical form�

This last result can be useful in cases where
 in a D � Z form of a Sylow
p�component
 one prefers not to alter Z	 Such a situation occurs in the example
in the preceding section	 There det �Z��� � � �mod ��
 but the �rst two rows are
linearly independent	 Because
 in the example
 all three Sylow pj�components
can be expressed by using the same matrix Z
 the �nal canonical form can be
expressed in D � Z form in ��	�� by retaining this matrix Z but changing d�
from � to �	 Then the redundant third row can be removed
 leaving a canonical
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D � Z form with

D �

�
�� � � �	 �

� �� �

�
� Z �

�
� � �
�� �� �

�
�
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